4 Future Work

Throughout this report we have suggested areas for future work. In this section we summarise those and expand on our prospective approach, as well as discuss some related models in the literature.

References

[7] Buttà, P., Flandoli, F., Ottobre, M. and Zegarlinski, B. (2019). A non-linear kinetic model of self-propelled particles with multiple equilibria. Kinetic & Related Models 12(4) 791–827.

[9] Garnier, J., Papanicolaou, G. and Yang, T.-W. (2019). Mean field model for collective motion bistability. Discrete & Continuous Dynamical Systems - B 24 851.

[13] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. and Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 1226–9.

[14] Cucker, F. and Smale, S. (2007). Emergent behavior in flocks. IEEE Transactions on Automatic Control 52 852–62.

[15] Couzin, I. D., Krause, J., James, R., Ruxton, G. D. and Franks, N. R. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology 218 1–11.

[16] Czirok, A., Barabasi, A.-L. and Vicsek, T. (1997). Collective motion of self-propelled particles: Kinetic phase transition in one dimension.

[17] Mattingly, J. and Stuart, A. M. (2002). Geometric ergodicity of some hypo-elliptic diffusions for particle motions. Markov Processes and Related Fields 8 199–214.

[18] Bellet, L. R. (2006). Ergodic properties of markov processes. In Open quantum systems ii: The markovian approach (S. Attal, A. Joye and C.-A. Pillet, ed) pp 1–39. Springer Berlin Heidelberg, Berlin, Heidelberg.

[19] Bernardi, S., Estrada-Rodriguez, G., Gimperlein, H. and Painter, K. J. (2019). Macroscopic descriptions of follower-leader systems.